MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .


 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :






renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]

Renormalização em EDQ[editar | editar código-fonte]

Em Lagrangeano de EDQ,

  / G* =  = [          ] ω           .

Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:

  / G* =  = [          ] ω           .
  / G* =  = [          ] ω           .
  / G* =  = [          ] ω           .

Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[






Na teoria quântica de campos, uma identidade de Ward-Takahashi é uma identidade entre funções de correlação que decorre das simetrias globais ou de calibre da teoria e que permanece válida após a renormalização. A identidade de Ward-Takahashi da eletrodinâmica quântica foi originalmente usada por John Clive Ward[1] e Yasushi Takahashi[2] para relacionar a renormalização da função de onda do elétron ao seu fator de renormalização de vértices, garantindo o cancelamento da divergência ultravioleta em todas as ordens da teoria das perturbações. Usos posteriores incluem a extensão da prova do teorema de Goldstone a todas as ordens da teoria da perturbação.[3][4]

De maneira mais geral, uma identidade de Ward-Takahashi é a versão quântica da conservação de corrente clássica associada a uma simetria contínua pelo teorema de Noether.

Identidade de Ward-Takahashi formalizada[editar | editar código-fonte]

A identidade de Ward-Takahashi aplica-se a funções de correlação no espaço de momento, que não têm necessariamente toda a sua Momenta externa na on shell.[5] Deixe

  / G* =  = [          ] ω           .

ser uma função de correlação QED envolvendo um fóton externo com momento k (onde  é o vetor de polarização do fóton e a soma sobre  is implied), n elétrons de estado inicial com momento , e n elétrons de estado final com momento . Defina também  ser a amplitude mais simples obtida pela remoção do fóton com momento k da nossa amplitude original. Então a identidade de Ward-Takahashi diz

  / G* =  = [          ] ω           .

onde e é a carga do elétron e tem sinal negativo.Observe que se  tem seus elétrons externos off-shell, então as amplitudes do lado direito dessa identidade têm uma partícula externa off-shell e, portanto, não contribuem para os elementos da matriz S.

Identidade de Ward[editar | editar código-fonte]

A identidade de Ward é uma especialização da identidade Ward-Takahashi para elementos da matriz S, que descrevem processos de dispersão fisicamente possíveis e, portanto, têm todas as suas partículas externas on-shell. Novamente deixe  ser a amplitude de algum processo QED envolvendo um fóton externo com impulso , onde  é o vetor de polarização do fóton.[6] Então a identidade da ala diz:

  / G* =  = [          ] ω           .

Fisicamente, o que essa identidade significa é a polarização longitudinal do fóton que surge no gauge ξ é anti-físico e desaparece da matriz S. Exemplos de seu uso incluem a restrição da estrutura tensorial da polarização do vácuo e da função de vértice de elétrons no QED.[7]

Comentários

Postagens mais visitadas deste blog